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Abstract

This Sustainable Development Goal (SDG 7) analysis addresses critical challenges through three questions, backed
by literature and evidence. Environmental, social, and governance concerns were discussed. A notable SDG target
shortfall was observed from International Renewable Energy Agency, International Energy Agency, and United
Nation's publications. Urgent actions include refining greenhouse gas emission equivalent estimations and estab-
lishing unified life cycle assessment standards. While prioritizing renewables, minimizing dependence on non-
renewables for a lower carbon footprint is vital. Balancing energy production with per capita consumption reduction,
especially with a growing population, is key to achieving net-zero emissions. This solution demands a thoughtful
evaluation of challenges tied to specific renewable technologies and their socio-economic impact. Balancing eco-
nomic growth, crisis response, and resource management is crucial for acheiving SDG 7 targets.

Keywords Energy efficiency, Affordability gap, Electrification, Energy access, Global employment

Introduction

Fossil fuels (GT), actuating the progress of human civi-
lization from the industrial age (1800) to current era of
economic growth (2023), provides the essentials in the
form of electricity for various aspects of modern life,
including transportation, thermal comfort, industrial
processes, refrigeration, medical care, agriculture (food),
electronics, and beyond [1-6]. However, burning of fossil
fuels and deforestation, primarily accounts for the esca-
lating greenhouse gas emissions (GHG) (Major: CO,,
CH, Minor: N,O, H,0, O;, CFCs) driven by the seven
largest emitters (China, India, USA, EU, Indonesia, Rus-
sia, Brazil), which has contributed to ~50% of the climate
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change (GT) in 2023, (Floods in Libya, North Africa,
2023 [7]) [8, 9]. To combat these climate challenges and
to improve the quality of human’s life, the United Nations
(UN) has set SDGs (GT) encompassing 17 goals, 169
objectives, and 231 indicators [10]. SDG7 (GT) empha-
sis on providing affordable and sustainable energy (GT)
to aid in achieving netzero (GT) emissions by 2050 (Paris
Agreement, SDG 13) (GT) and has interrelations between
other SDGs (Fig. 1). Without reliable access to energy, it
becomes challenging to eradicate poverty (SDG 1) as it
limits opportunities for income generation and hinders
access to essential services. Moreover, quality educa-
tion (SDG 4) is compromised without reliable energy for
schools, and good health (SDG 3) is jeopardized without
power for healthcare facilities. The objectives of SDG7
involves increasing the adoption of renewables (GT),
achieving a twofold enhancement in energy efficiency,
fostering stronger international cooperation, technologi-
cal and infrastructural progress, which are accessed by
metrics including accessibility to electricity (%), adoption
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Fig. 1 Interrelations between other SDGs and SDG 7 (SDG 7, centred on affordable and clean energy, directly, curtails reliance on costly

and polluting fuels, thereby addressing poverty (SDG 1) while facilitating clean energy for healthcare services (SDG 3) and sustainable urbanization
(SDG 11) through reliable infrastructure and power. It also aligns with responsible consumption and production (SDG 12), with lesser consumption
of resources and reduced negative effects on ecosystem. Indirectly, SDG 7 supports all kinds of agricultural practices that promotes sustainability
(SDG 2), elevates educational quality (SDG 4), empowers women by creating Jobs (SDG 5), facilitates clean water access (SDG 6), drives economic
expansion (SDG 8), spurs technological innovation (SDG 9), advances social equality (SDG 10), aids climate change mitigation (SDG 13), safeguards
biodiversity (SDG 14, SDG 15), and fosters peace, justice, and collaborative partnerships (SDG 16, SDG 17). This interconnectedness underscores

the importance of SDG 7

of clean cooking technologies, utilization of renewable
energy (GT), improved energy efficiency (] or kWh),
investments in clean energy (USD or EUR), and carbon
emissions per unit of electricity generated (gCO,/kWh)
[9, 10]. Figure 2a depicts the energy market evolution

(See figure on next page.)

from 1900 to 2023. Wind and solar energy costs dropped
significantly, from 100 USD/MWh in 2014 to 30 USD/
MWh in 2022. This signals a strong global push to phase
out fossil fuels by 2030. The globe requires>50% of
reduction in GHG emissions by 2030 to limit warming to

Fig. 2 a Schematic timeline of energy transition and global initiatives from 1990 to 2023, here NDC means Nationally Determined Contributions
(b) Consumption of fossil fuels from 1800 to 2023 and their projected depletion in years (data used under CC license from [16]and [17] Energy
Institute Statistical Review of World Energy (2023); Vaclav Smil (2017)) (c) Global warming anomaly (data obtained from [16] and [18, 19]) (d) %
share of renewables equivalent installed in major marketable countries. (All data used and analyzed were obtained from [20] and Ember’s European
Electricity Review; Energy Institute Statistical Review of World Energy [21], curated and filtered) (e) % of electricity contributed from renewables

in Association of Southeast Asian Nations (ASEAN), Africa, Asia, Australia, China, Europe, India, UK and Us (Note: Europe includes majorly Germany,

Spain, UK and Finland)
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e Battery & Grid level integration
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* Global wind capacity ~ >590 GW (2022)
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* Wind energy price decrease to ~30
USD/MWh (2022)

* Solar energy price ~ 20 USD/MWh
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1.5 °C, which is globally supported by shifting to renewa-
bles. According to [11] and Fig. 2a SDG?7 targets energy
poverty and vulnerability, particularly affecting specific
social groups, but lacks emphasis on absolute demateri-
alization (GT). Further, the shift to renewables may inad-
vertently increase production sites in rural areas with
lower land values and formalized land rights [11]. Pre-
vious reports suggest that the SDG framework broadly
focusses on Greenhouse gas (GHG) emissions and decar-
bonization, accentuating less on technology and socio-
economic scenarios [10, 12—15].

In this analysis, we focus on addressing three primary
challenges associated with transition to renewables, con-
sidering their environmental (E), social (S) and Govern-
ance (G) impact in compliance with SDG7: Target 7.1
(Ensure universal access to affordable, reliable, and mod-
ern energy services). The "Just Transition’ [22] to renewa-
bles involves broader assessment and has complexities
related to long-term productions, job security, financial
hurdles, which are yet to be clearly addressed.

Challenge 1 (E): The emissions stemming from equip-
ment production, infrastructure development, trans-
portation, and eventual decommissioning and end-of-life
waste management (GT) of renewable energy sources
necessitate a deeper understanding on how it balances
the long-term emissions from fossil fuels. Is the transi-
tion to renewable energy truly sustainable?

Challenge 2 (S): Gap exists between fair employment
opportunities for workers affected by job displacement
from Oil & Gas to renewable energy. Additionally, meas-
ures are still needed to bridge the energy efficiency gap
between affluent and resource-constrained communi-
ties, preventing the potential augmentation of socio-eco-
nomic disparities.

Challenge 3 (G): While developed nations extend sup-
port, the high initial costs of renewable technologies
(hydropower and concentrated solar power) hinder the
progress in low-income countries. however, acknowledg-
ing this trade-off may temporarily benefit low-income
households and may develop affordability gaps across
income groups. How can governments implement meas-
ures to alleviate these upfront expenses ?

Before addressing the challenges, three key questions
assisted by literature [8, 11-15, 23-33] and factual evi-
dence from International Renewable Energy Agency
(IRENA), International Energy Agency (IEA), Energy
Information Administration (EIA), The World Bank
Group, British Petroleum (BP), World Resources Insti-
tute (WRI), Global Wind Energy Council (GWEC), Solar
Energy Industries Association (SEIA) | https://www.iea.
org/ | https://www.eia.gov/ | https://www.irena.org/ |
https://www.seia.org/ | https://gwec.net/ | https://www.
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wriorg/ | https://www.bp.com/ | https://www.world
bank.org/en/home are introduced to analyse the listed
challenges, accompanied by the constructive suggestions
of the authors.

1. Does relying solely on renewables offer an affordable,
reliable, and sustainable energy solution?

Transitioning to renewables by 2050 could save up to
$12tn globally but requires a drastic reduction in fossil
fuel production and consumption [33]. Figure 2b illus-
trates the consumption trend of fossil fuels from 1800
to 2023, along with the projected years remaining until
their depletion: Coal (140), Oil (57), and Gas (49). With
energy demand spiking 2.3% in 2018, and a projected
3.4% Gross Domestic Product (GDP) growth by 2040,
thus the priority should be improving the energy effi-
ciency of existing systems. In 2022, oil demand increased
by 2.3 mb/d, and projections for 2023 indicated a growth
of 1.7 mb/d (IEA 2023) [34]. Roughly 83% of oil reserves,
primarily in Canada, should remain untapped (~>3%
decline in oil consumption is required each year till
2050). Thus, shifting to natural gas is the next priority,
given its abundant reserves (7,124 trillion cubic feet,
2018) [35]. Figure 2c underscores the urgency of this
transition, with sea temperatures surging from -0.4°C
in 1990 to 0.9°C in 2023. This alarming trend poses a
threat to aquatic habitats [34, 36]. Rising sea tempera-
tures threaten marine ecosystems, causing disruptions
in species life cycles, coral bleaching, and biodiversity
loss. This underscores the urgency of mitigating human
activities linked to climate change to protect marine
environments.

The literature reviewed in this study were chosen
from Scopus, based on the selection criteria, men-
tioned in appendix. Based on [37-46], we agree that
primary challenges include time and financial con-
straints. These are exacerbated by the intermittent
nature of renewables, requiring auxiliary energy stor-
age and grid upgrades for integration. However, con-
sidering long-term viability, we assert the obligation of
deep analysis on (i) technological maturity (given the
continuous innovation in renewables, standardization
remains as a challenge), (ii) economic viability (return
on investments, resource availability, market competi-
tion & impact, access to capital among other externali-
ties), (iii) subsidy dependence (with implications for
market distortion and inequalities), (iv) Levelized Cost
of Electricity (LCOE) (should include life cycle assess-
ments and extended producer responsibilities) [47],
and (v) regional needs (not an exhaustive list). Thus, a
broader assessment is required for this paradigm shift.


https://www.iea.org/
https://www.iea.org/
https://www.eia.gov/
https://www.irena.org/
https://www.seia.org/
https://gwec.net/
https://www.wri.org/
https://www.wri.org/
https://www.bp.com/
https://www.worldbank.org/en/home
https://www.worldbank.org/en/home
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2. What is the current level of accessibility to renewable
energy, and how swiftly are we progressing towards
broader availability? Additionally, what are the pro-
jected trends?

Renewable energy comes from naturally replenish-
ing sources, offering lasting potential but limited short-
term outputs (EIA 2020). Figure 2c, d shows the 50% of
renewables contributions in major marketable countries
(Germany, US, Brazil, and China have highest contribu-
tions). The per capita installed capacity for renewable
energy generation in>230 developing nations exclud-
ing pumped hydrogen increased overall from 104 W in
2013 to 241 W in 2022, with this trend the projections
are~630 W in 2050, which means additional ~30%
increase in production or decrease in consumption is
needed to meet the targets [16]. In 2013, the installed
solar energy capacity was 141417 MW, which grew to
1061630 MW in 2022. However, concentrated solar
power’s installed capacity is less (6602 MW) due to its
high initial investment. Bioenergy, derived mainly from
organic waste, constitutes over ~40% of total renewa-
bles, followed by wind, hydro, and geothermal energy
[48]. Wind energy, harnessed from both onshore and
offshore turbines, has seen remarkable growth in the
past two decades. Overall, major contributors to renew-
ables include China, India, Brazil, Germany, the UK,
and the USA, Australia, Japan, etc., while regions in
Asia (Indonesia, Thailand, Philippines, Vietnam, Bhu-
tan, Sri Lanka, Myanmar, etc.), Africa (Congo, Liberia,
Angola, etc.), and Europe (Denmark, Norway, Nether-
lands, Romania, etc.), Middle east could benefit from
increased contributions [16, 49].

3. Are the current levels of financial investment in
renewables adequate to progress in this transition?

In 2022, global renewable energy investment reached
$0.5 trillion, marking a 19% increase from 2021 and a 70%
surge from pre-pandemic 2019 levels. In 2020, solar pho-
tovoltaic received 43% of total renewables investment,
followed by onshore and offshore wind at 35% and 12%
respectively [25]. However, this falls short of the annual
average needed from 2023 to 2030, underscoring the
urgency to boost investments in off-grid (G) renewables,
especially in solar. Regional disparities persist, with over
half of the global population in developing nations (Sub-
Saharan Africa, Middle East) receives only 15% of global
investments, whereas Europe and US leads by~40% in
2020 [16]. Redirecting $1 trillion annually from fossil
fuels to energy-transition-related technologies in devel-
oping countries is needed [25].

(2023) 6:17
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Sustainability of the renewable energy

The transition to renewables is paradoxically reliant on
non-renewable resources, particularly mined metals.
In 2020, mining operations for materials essential to
renewable energy production was~16% of wilderness
areas and the production of a single ton of rare-earth
and toxic elements (La, Nd, Sr, Te, Cd of ~5 to 10 g/
m? for PV [50] etc.) generates~ 2,000 tons of waste.
Life cycle assessment (LCA) (G) studies are necessary
for addressing the environmental concerns of major
marketable renewables (solar, wind, hydro, geothermal
and others). The methodology of LCA analysis for solar
PV and wind is stated elsewhere [51-53] The installed
capacities of renewables as per IRENA is shown in
Table 1.

Coal emissions increased ~1.6% (243 Mt), while oil
emissions rose by 2.5% partly due to increased aviation
in 2022 compared to 2021. The biggest spike in emis-
sions (1.8% or 261 Mt) occurred in electricity and heat
generation, predominantly from coal sources, particu-
larly in emerging ASEAN economies [54—57]. The US
saw a 0.8% increase (36 Mt) in emissions, largely due
to peak electricity demand during summer heat waves.
The analysis in Table 2 and Fig. 3 reveals that biomass
and nuclear energy production result in higher CO,-e
emissions compared to solar and wind energy. Hydro-
electric energy falls in the mid-range in terms of emis-
sions. Moreover, solar and biomass energy have lower
initial installation costs, and the payback period is
shorter for solar, wind, and geothermal energy. When
considering sustainability, renewables can be ranked
from highest to lowest as follows: solar, hydroelectric,
wind, biomass, geothermal, and nuclear.

However, the concept of CO,-e emissions indeed
poses several challenges in the context of GHG reduc-
tion efforts. Firstly, it fails to distinguish between spe-
cific greenhouse gases like CO,, N,O, CH, as well as
other less prevalent but potent gases. This lack of speci-
ficity can be problematic because different gases have
varying levels of global warming potential (GWP) and
different lifetimes in the atmosphere. For instance, while
CO, is the most prevalent GHG, its long-term impact
is more enduring than shorter-lived but highly potent
gases like CH,. Consequently, a reduction in CH, emis-
sions might have a more immediate and significant
impact on mitigating global warming. Furthermore,
CO,-e labelling may not accurately reflect the true envi-
ronmental and economic costs associated with each
greenhouse gas. Calculating GWP involves a degree of
ambiguity, as it depends on complicated models and
discrepancies in published literatures [18, 21]. This
ambiguity can make it challenging to accurately price
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Table 2 Essential criteria to access the sustainability of renewable technologies, includes cost, payback period, and CO,-equivalent

(CO,-e) emissions (EROEI - Energy Return on Investment)

Technology Costs Involved for Energy EROEI and Possible toxic elements present Emissions (g CO,-eq/kWh)
1 MW production payback  Reproduction
($Smillion) time Potential
Polycrystalline SiPV 1to 1.5 61048 20-40 Pb, SiCl, Cu 60.1 for 10 MW/year; 50 to 60;
64.2;41.8;65.2;671 [58-64]
Thin film PV 900,000t0 1.8 >12 NA Cr, As, Cd, Pb, Te, Cu, Se, In, Ga 40; 12 to 70; 20; 14; 26 [58, 65]
Wind Onshore:1.3t022 <24 18-35 Pb, Nd, Dy, Pr, Hg, Asbestos, Be, Cd 34.11; 1.7 to 81; [66-69]
Offshore: 2.5 to 4
Hydroelectric 2to5 <24 10—80 Hg, Cd, Cr, Ni 50 -300 [68, 70-72]
Geothermal Dry Steam: 2to 5 2to0 10 36-6 H,S, B, S, As, Sb, TI, Hg 1.7t081[73,74]
Flash Steam:3t0 8
Binary Cycle:2to 6
Biomass 500,000 to 2 61024 3-20 Aromatic Hydrocarbons, Dioxins 100 to 400 [67, 70, 71]
and Furans, Cl and S, Particulate Matter
Nuclear Traditional: 6 to 9 >24 75-150 U, Pu, Cs-137, 5r-90, 1-131, C-60, Tc-99 m, 12;14;120; 150 [67, 75, 76)]

Small Modular
Reactors (SMRs):
4106

Np, Actinides

GHG emissions, potentially leading to misallocations of
resources in mitigation efforts.

Equitable employment opportunities

Increasing Human development Index (HDI) and
higher degree holders imply progress in education and
socio-economic status (Fig. 4a) [86]. However, there is
a potential downside. Individuals may find themselves
accepting jobs with lower pay and positions in energy
sector that do not align with their educational qualifi-
cations. Additionally, employment in coal industries
has drastically reduced (Fig. 4b). The shift to net-zero
emissions could create 9 million new energy sector
jobs by 2030, despite an estimated loss of 5 million in
fossil fuel production. Additionally, clean energy sec-
tors, encompassing efficiency, automotive [87-93], and
construction, could generate over 30 million jobs by
2030, offering new opportunities in emissions-reducing
technologies (Fig. 4c) [94, 95]. However, the transition
has led to job displacement in fossil fuel-reliant com-
munities, particularly in coal. This shift from Oil &
Gas to solar and wind energy has resulted in fewer job
opportunities compared to the offset in oil and gas as of
2023. Both industries rely on imports, potentially lim-
iting local job growth in countries like US, Singapore,
and Australia (Fig. 4d). Transitioning to renewables
demands workforce retraining, and encounters resist-
ance from fossil fuel interests, potentially causing social
disruptions in communities heavily reliant on fossil
fuels [96, 97]. For instance, petroleum related jobs are
localized but crucial for many local economies. While
the energy sector constitutes a small portion of global

employment (1.2%), in places like Saudi Arabia, it sig-
nificantly contributes to GDP (50%) despite employing
a smaller percentage (4.8%) [94, 98].

The top companies in Oil & Gas, renewables, and their
number of employees as per 2022 is listed in Fig. 4e. The
Oil & Gas, industries, including Saudi Aramco, Chev-
ron, ExxonMobil, British Petroleum (BP) and Royal
Dutch Shell currently have more employees than renew-
able industries (NextEra Energy, Vestas Wind Systems,
Siemens Gamesa, and Enel Green Power); however, the
recruiting counts of Oil & Gas, have slightly reduced in
2022. Former coal workers often find replacement jobs
with lower pay and skill gaps (Fig. 4f). Fossil fuel workers
also tend to earn more and have higher health insurance
coverage compared to solar and wind workers. Coal-
linked pension funds suffer due to economic decline,
impacting communities. Areas with power plants and
mines experience lower education rates and income
instability. Coal closures lead to reduced local tax rev-
enue, resulting in budget cuts, school closures, and job
losses [103]. The transition can increase energy insecu-
rity, disproportionately affecting low-income individuals.
In 2018, United Steelworkers represented 18% of petro-
leum workers, while solar and wind workers had lower
unionization rates (4% and 6% respectively) [94, 98].

While the shift towards renewable energy is crucial
for environmental sustainability, these economic and
social consequences highlight the need for comprehen-
sive support measures for affected communities and
workers. Existing energy workers possess skills transfer-
able to clean roles, such as in wind, carbon capture, and
low-carbon gas. Restoring closed mines can maintain
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post-closure jobs [49]. Focusing on qualified workers and
inclusive support is vital for clean energy jobs, ensuring
safety, equity, and inclusion in affected communities.
Government support with inclusive criteria drives eco-
nomic development and public acceptance. The Global
Commission is shaping principles for diverse transitions,
guiding IEA’s efforts and COP26 input. The overall pro-
gress in SDG 7 is shown in Fig. 5a-f. Access to invest-
ments in green energy was identified as unstable (7.A.1),
indicating a need for increased attention and focus.

Affordability gaps in renewable adoption
Affordability gaps in renewable adoption stem from high
initial costs, rapid tech evolution, and economies of high-
income favouring larger projects (Fig. 5e, f). This could
particularly affect low-income households, who already
allocate a significant portion of their income to energy
expenses [110]. In 2022, energy investment is set to surge
by 8%, but almost half of this increase is due to rising
costs rather than expanding capacity or savings. These
cost hikes are driven by supply chain strains, labour
shortages, and increased prices for materials like steel
and cement. However, higher prices alone can’t ensure
sustainable choices, especially in less affluent nations
with inadequate policies [110-112].

Power generation projects in renewables and grids
often rely on debt, while smaller ventures or areas with
limited credit use equity more. Although advanced econ-
omies have easier access to debt, equity remains crucial
for emerging sectors. Power generation costs range from
3-7% depending on the region [113, 114]. It’s unfair for
developing economies to bear the full cost of the transi-
tion. Currently, increasing fossil fuel prices dispropor-
tionately affect Asia and Africa, with an estimated 90
million struggling to afford energy. This raises concerns
about possible energy poverty, affecting nearly 90 million
people in Asia and Africa struggling to meet basic energy
needs [111, 115].

In the solar sector of Emerging Market and Develop-
ing Economies (EMDE), institutional investors grapple
with hurdles. A key obstacle is the limited availability
of instruments tailored for solar ventures. Additionally,
institutional investors in EMDE prioritize liquid assets
like equity, bonds, and structured finance, discouraging
solar investments. Low credit ratings of solar corporate

(See figure on next page.)
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bonds in EMDE further dissuades participation. To navi-
gate complexities and mitigate risks, investors often rely
on intermediaries like debt funds. Unfortunately, a short-
age of specialized financial services exacerbates these
challenges, hindering the realization of solar energy’s
potential in these economies [116, 117].

Closing the investment gap in emerging economies
is crucial for equitable climate action and sustainable
development. Additional financial and technical support,
including concessional and private sector capital, are
pivotal. Without a substantial increase in clean energy
investment, global efforts to combat climate change and
achieve sustainability goals will face significant chal-
lenges. Geopolitical events are prompting investments in
various fuels, including coal in emerging Asian markets
[111, 116]. Additionally, rising prices of critical minerals
are emphasizing the importance of mining, refining, and
processing in the transition to more sustainable energy
systems. Institutional investment in renewable projects
can be facilitated with essential risk-mitigating tools
such as guarantees and insurance. Partial credit guaran-
tees from international development institutions bolster
bond ratings, and solar debt funds with public first-loss
protection appeal to low-risk investors. The Interna-
tional Solar Alliance (ISA), Global Wind Energy Council
(GWECQ), Alliance for Rural Electrification (ARE), Global
Biofuel Alliance (GBA) (GBA- led by India as the G20
Chair, to accelerates global biofuel adoption) and IEA are
actively working on solutions to enhance capital acces-
sibility. Coordinated efforts and innovative strategies are
imperative to close the renewable energy investment gap
and align with Paris Agreement, SDG objectives [111,
115-117].

Summary and outlook

Conclusion

This article compiles data and information regarding the
current progress in renewable energy development. The
speed of this transition is lagging and uncertain, contin-
gent on various factors including policy support, techno-
logical advancements, and economic considerations. We
have underscored three challenges, the need for more
comprehensive and standardized reporting standards
for GHG emissions from renewables, the trade-offs in

Fig. 4 a Evolution of human development index (HDI), which is proportional to employment (data adapted from Our world in data [86, 99] [99])
(b) Total employment in coal industries in UK from 1890 to 2022 (data adapted from Our world in data [86, 99]) (c) Global employment in terms
of number of Jobs as per 2022 (World Bank, IEA, Our World in Data [100]) (d) Job shift towards renewables marked by individual countries 2022
(World Bank, IEA, Our World in Data [99]) (e) Top companies in O &G, renewables and NOE — Number of Employees (World Economic Forum,
Thomson Reuters, Wikipedia) (f) Comparison of wages in fossil fuels and renewables sector (data adapted from [101] and [102])
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job opportunities, and affordability gaps for low-income
communities in adopting renewable technologies. The
following analysis were made,

+ The United States witnessed a 0.8% CO, emission
increase (36 Mt), primarily due to increased electric-
ity demand during summer heat waves. Solar and
biomass energy showed promise with lower installa-
tion costs and shorter payback periods. When assess-
ing the sustainability of renewables, solar, hydroelec-
tric, wind, biomass, geothermal, and nuclear energy
were ranked from highest to lowest sustainable.
Immediate challenges to address are the issues asso-
ciated with the credibility of CO,-equivalent emis-
sions. The method lacks specificity in distinguishing
between different gases, such as CO, and CH,, each
with unique global warming potentials and atmos-
pheric lifetimes. Focusing on methane emissions
reduction may offer more immediate global warming
mitigation.

« The shift toward achieving net-zero emissions by
2030 has the capacity to generate 9 million new jobs
in the energy sector, counterbalancing the anticipated
loss of 5 million jobs in fossil fuel production. In the
realm of clean energy, encompassing efficiency, auto-
motive, and construction, there is a potential for over
30 million jobs, underscoring the opportunities in
emissions-reducing technologies. However, such a
transition necessitates workforce retraining and may
encounter resistance from fossil fuel interests, posing
the risk of social disruptions in affected communi-
ties. It is imperative for government support, char-
acterized by inclusive criteria, to play a vital role in
facilitating economic development and securing pub-
lic acceptance.

+ Closing the investment gap in emerging economies
is crucial for equitable climate action and sustainable
development. Increased financial and technical sup-
port, involving concessional and private sector capi-
tal, is essential. Without a substantial rise in clean
energy investment, global efforts to combat climate
change and achieve sustainability goals will face sig-
nificant challenges.

Prospects

1. If renewables are harnessed with a concerted effort
to minimize GHG emissions, the prospects are
promising. A substantial reduction in carbon foot-
print would be achieved, significantly contributing to
global climate goals.

(2023) 6:17
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2. While the renewable energy sector holds great
potential for innovation and job creation, it requires
efforts to retrain and upskill the workforce from tra-
ditional energy industries. Adapting to this shift will
be crucial in maximizing the economic benefits and
ensuring a sustainable transition for all stakeholders
involved.

3. Implementing targeted subsidies and financial incen-
tives to reduce the upfront costs of renewable tech-
nologies for consumers and businesses could also
support the global climatic initiatives.

Authors viewpoint

The transition from petroleum to electrification and the
fight against climate change present a multifaceted chal-
lenge that demands a debatable approach. There is no
one-size-fits-all solution; instead, a careful evaluation of
interconnected processes in energy extraction is required
until renewable technologies can independently lead the
way. While fossil fuels are currently necessary for decar-
bonization, powering EVs, and supporting renewable
energy production, it is crucial to ensure their use aligns
with UN sustainability goals. Despite notable progress,
achieving the SDG7 goals demands ongoing efforts,
including the establishment of comprehensive and uni-
fied GHG reduction standards, optimized resource allo-
cation, micro-assessment of GHG emissions, mandatory
sustainable reporting, and the introduction of Green
Scores. Developing economies face an inequitable burden
in the transition, experiencing the impact of rising fossil
fuel prices, particularly in Asia and Africa where 90 mil-
lion people struggle with energy poverty. This situation
adversely affects education and income stability. There
is an urgent call for investments in off-grid renewables,
especially solar. Ongoing regional disparities show that
Europe and the US lead in investments, making up 40%,
while developing nations receive only 15%. Innovation,
market-driven strategies, data transparency, fact verifi-
ability, global collaboration, and increased public aware-
ness about climate change are critical components of this
clean energy transition.

Appendix

Methodology

This article was drafted by reviewing 67 primary research
articles from the Scopus database from 2014 to 2023
based on PRISMA approach [118] and [119]. These arti-
cles were curated through targeted searches using spe-
cific keywords combinations, "SDG7 AND Efficiency,"
"SDG7 AND Challenges," "SDG7 AND Africa," "SDG7
AND China," "SDG7 AND India," "SDG7 AND Europe,"
"SDG7 AND Indonesia," "SDG7 AND Trade-offs," 7 AND
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Renewable Energy", "SDG7 AND Sustainable Develop-
ment", "SDG7 AND Energy Access", "SDG7 AND Clean
Energy", "SDG7 AND Rural Electrification”, "SDG7 AND
Energy Transition", "SDG7 AND Policy Implementa-
tion", "SDG7 AND Technology Innovation", "SDG7 AND
Energy Security", "SDG7 AND Carbon Emissions", "SDG7
AND Green Economy","SDG7 AND Climate Resilience",
"SDG7 AND Power Generation", "SDG7 AND Energy
Poverty”, "SDG7 AND Sustainable Practices”, "SDG7
AND Access to Electricity", "SDG7 AND Energy Afford-
ability”, "SDG7 AND Decentralized Energy", "SDG7 AND
Urban Energy", "SDG7 AND Energy Efficiency Measures"
and "SDG7 AND Case Study." The initial pool of identi-
fied articles across all searches ranged from 150 to 170.

The final selection was refined based on relevance,
and alignment with the theme, culminating in a set of
67 research articles. The article also has used data from
sources including the IEA, IRENA, World Economic
Forum, EIA, and Our World in Data. The data for this
study was gathered from various sources, curated, and sub-
sequently visualized using Microsoft Excel and Origin 3.2.
Additionally, the study delves into the authors’ perspectives
on potential future developments in this context. For the
convenience of researchers and stakeholders interested in
further scrutinizing or replicating our work, all the datasets
employed in this study have been available for access in the
"Datasets.zip’ archive, provided the original source solely
owns the rights for the datasets and must be cited. Further-
more, to uphold transparency and acknowledge the contri-
butions of the original data sources, we have documented
the copyrights and sources in the accompanying copyrights
and sources.docx’ file.

Abbreviations
o, Carbon dioxide gas
CH, Methane gas

O; Ozone gas

N,O Nitrous oxide

H,0 Water

ASEAN  Association of Southeast Asian Nations

BP British Petroleum

CO,e  CO,equivalent

CFCs Chlorofluorocarbon

EIA U.S. Energy Information Administration

EMDE Emerging Market and Developing Economies
EROEI Energy Return on Investment

GDP Gross Domestic Product

GWEC  Global Wind Energy Council

GWP Global Warming Potential

[EA International Energy Agency

IRENA  International Renewable Energy Agency
SEIA Solar Energy Industries Association

SDG Sustainable Development Goals

WRI World Resources Institute
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Glossary
Climate change Long-term alterations in temperature, weather pat-
terns, and sea levels due to human activities, primarily
the release of greenhouse gases
Reducing material usage and waste generation by employ-
ing efficient technologies and sustainable practices
Reducing material usage and waste generation by employ-
ing efficient technologies and sustainable practices
Non-renewable natural resources like coal, oil, and
natural gas used for generation of energy (electrical)
LCA Method to evaluate environmental impacts of a prod-
uct or process over its entire life cycle, from produc-
tion to disposal

Decommissioning
Dematerialization

Fossil fuels

Netzero Achieving a balance between the greenhouse gases
emitted and those removed from the atmosphere
Off-grid Energy systems or communities independent of the

main electrical grid, often relying on localized renew-
able sources

Global treaty adopted in 2015, aiming to limit global
warming and promote climate resilience

Power generated from sources that naturally replen-
ish, minimizing environmental impact

Paris Agreement

Renewable energy

Renewables Energy derived from naturally replenished resources
like sunlight, wind, and water

SDG 13 Focuses on climate action, urging immediate steps to
combat climate change and its impacts

SDG7 Targets universal access to affordable, reliable, sustain-
able energy by 2030

SDGs United Nations'set of 17 global goals to address social,

economic, and environmental challenges by 2030
Power sources with minimal environmental impact,
ensuring long-term availability and reducing harmful
emissions

Sustainable energy
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